Science with the Space Interferometry Mission

Stephen Unwin

SIM Deputy Project Scientist

Jet Propulsion Laboratory

California Institute of Technology

J

April 21, 2000

Summary

- What is SIM?
 - Scientific drivers and performance
 - Brief summary of instrument
- How SIM performs astrometry
- How SIM does imaging
- SIM science program
 - Astrometric detection of extrasolar planets
 - Galactic dynamics
 - Rotational parallaxes of galaxies
 - Using gravitational lenses to probe dark matter
 - Stellar astrophysics
- SIM project status

What is SIM?

- SIM is a space-based optical interferometer for precision astrometry
 - 10-m baseline, Michelson beam combiner
- Launch mid-2006, with a minimum 5-year mission lifetime
- SIM has 4 basic operating modes
 - Global astrometry
 - Local astrometry
 - Synthesis imaging
 - Fringe nulling demonstration for future missions
- How does it operate?
 - SIM measures the white-light fringe position on 3 simultaneous baselines:
 2 guides and 1 science
 - Using delay and angle feed-forward, the guides stabilize the science interferometer at the microarcsecond level
- For more information visit the SIM web site:
 - http://sim.jplnasa.gov/

What is SIM?

Technology

Technology maturation over the next few years will determine the ultimate achievable performance

Science

ANASA Origins Mission

JPL April 21, 2000 S. Unwin - 4

Artist's impression of the SIM spacecraft, operating in a solar Earth-trailing orbit

JPL April 21, 2000 S. Unwin - 5

Development of the SIM science program

- Bahcall Report (National Academy of Sciences, 1991) "The Decade of Discovery"
 - Recommended an astrometric mission with an accuracy of 3 30 microarcseconds (μas)
 - Search for planets around stars within 150 pc
 - Distances to stars throughout the Galaxy
 - Demonstrate technology for future interferometry missions
- SIM Science Working Group
 - Team of ~20 scientists with astronomy / technology interests
 - Develop Science Requirements and advise NASA
 - Final Report (February 2000)
 - now available in hardcopy or on SIM web site
- SIM Science Team
 - AO for Science Team released February 2000
 - Proposals due May 2000
 - Team selection September 2000

SIM

SIM astrometric performance summary

Global (all-sky) astrometry

Astrometric accuracy:

4 μas (end of mission)

– Faintest stars:

V = 20 mag

(solar-type star at 10 kpc)

- Yields distances to 10% accuracy, anywhere in our Galaxy

Local (narrow-angle) astrometry

- Measurements are made relative to reference stars (within ~1° field)
- Astrometric accuracy:

1 μas in one hour

- This angle subtends a length of 1,500 km at 10 pc distance
 - From Pasadena to Denver, at a distance of 30 light years
- Proper motion accuracy:

2 μas / yr

- Motion due to parallax at 10 pc is detectable in a few minutes!
- Speed of a fast car at center of our Galaxy: 25000 light years

Grid Observing Scenario

Tile #3

Space Interferometry Mission

Instrument Field of Regard (15deg)

Tile #2 Tile #1 Baseline B

- Grid star
- O Science star

SIM science summary

- Planet searching:
 - Search for astrometric signature of terrestrial planets around nearby stars
 - Statistics and properties of planetary systems
- Distances and Luminosities:
 - Spiral galaxy distances using rotational parallaxes
 - Calibration of the cosmic distance 'ladder'
 - Ages of globular clusters
- Galaxy and star cluster dynamics and structure
 - Mass distribution in the halo of our Galaxy
 - Spiral structure of our Galaxy
 - Internal dynamics of globular clusters
 - Masses and distances to gravitational lenses
 - Dynamics of our Local Group of galaxies
- Imaging:
 - Emission-line gas around black holes in active galactic nuclei
 - Dust disks around nearby stars (nulling)

Measuring Distances in the Galaxy

- SIM will reach high accuracy on faint targets
 - 4 µas positions
 - 3 µas / yr proper motions
 - Limiting mag V = 20
- G-dwarf at 3 kpc:
 - V = 17.5, accuracy 1 %
- KIII giant at 25 kpc:
 - V = 15, accuracy 10 %

Combination enables demanding programs, like:

- rotational parallaxes
- tidal tails of disrupted dwarf galaxies

Astrometric Parameter Space

- SIM will reach
 - V = 20 and 4 μas accuracy (global)
 - 1 μas accuracy (local)
- Enables demanding programs such as:
 - Terrestrial planets
 - Rotational parallaxes
 - 'Tidal tails' of disrupted dwarf galaxies

SIM

Measuring distances to spiral galaxies using rotational parallaxes

- What? Measure distance to a galaxy in units of meters in a 'single step'
 - Other methods involve a 'distance ladder' of several steps
 - Applicable to the nearest spiral galaxies out to a few Mpc, to a few %
- How? Directly measure rotation of stars in galactic disk
 - SIM measures transverse proper motion: μ_{rot}
 - Measure radial velocities by ground-based spectroscopy: V_{rot} sin i
 - Ratio gives the distance directly
- Why? Scientific importance
 - Independent calibration of a population of Cepheids in an external galaxy
 - Cepheid stars are the single most important 'standard candle'
 - Spiral galaxies are themselves used as 'standard candles' for more distant objects in the Universe
 - SIM will calibrate these 'candles'

Using Gravitational Lenses to Probe 'Dark Matter'

- Microlensing is the gravitational bending of light by chance alignments of stars
- Events are detected by
 - Brightness enhancement (~days)
 - Astrometric perturbation (~weeks to months)
- Interpretation of current LMC lensing results is ambiguous
 - SIM would enable measurement of lens distances (in LMC or in our Galaxy?)
- Observing program:
 - Ground-based photometric monitoring program of many stars in the Large Magellanic Cloud (LMC)
 - SIM performs astrometry on detected events as 'targets of opportunity'

A NASA Origins Mission

JPL April 21, 2000

S. Unwin - 13

Using Gravitational Lenses to Probe 'Dark Matter' (cont.)

 Apparent star position moves in a characteristic pattern with relatively large amplitude of ~100 µas

 Symmetry of track 'broken' by Earth orbit motion

due to lens parallax

Hence: distance to lens

 Derive: mass, distance, and velocity of the lensing object This EPS image does not contain a screen preview.

It will print correctly to a PostScript printer.

File Name: sampAstFitBW.eps

Title: sampAstFitBW.eps

Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 338

Creation Date: Wed Jan 14 21:58:32 1998

Galactic Dynamics

 Study the 'classical' problems of size, mass distribution, and dynamics of the Galaxy, using stellar velocities

- Example:
 - Debris tail orbits (Sagittarius dwarf galaxy)
 - characteristic phase space signature
 - Distances to 5% at 10 kpc, for stars with V < 20
 - Proper motions to 0.1 km/s at 10 kpc
 - Combine with ground-based radial velocities

'Tidal tail' simulation:
Dwarf galaxy in orbit around the Milky Way

A NASA Origins Mission

JPL April 21, 2000

S. Unwin - 15

Imaging with SIM

This EPS image does not contain a screen preview. It will print correctly to a PostScript printer. File Name: uvpcover.ps Creator: gnuplot

Pages: (atend)

- SIM forms images by synthesizing the equivalent of a 10-meter aperture
 - Fully diffraction-limited
 - Operation down to 4000 Angstroms
 - Fully phase-stable:
 - High dynamic range

This EPS image does not contain a screen preview.

It will print correctly to a PostScript printer.

File Name: synthbeam.ps

Creator: gnuplot Pages: (atend)

Massive black holes in active galactic nuclei Example: NGC 4261

- HST / WFPC2 images show an dust disk surrounding a bright emission-line region centered on the nucleus
- HST spectra indicate nucleus contains a massive black hole
- SIM can image the central 0.3 arcsec at 10 milliarcsecond resolution
- Detect and measure black hole mass using Doppler-shift of the $H\alpha$ line

HST/WFPC2 images of nucleus of NGC4261, at a distance of 30 Mpc (Ferrarese et al. 1996)

Planetary Systems: Questions

- Statistics of planetary systems
 - How common are planetary systems?
 - Are certain star types favored?
 - What is the distribution of planetary systems in the Galaxy?
- Characterizing planetary systems
 - What are the orbit radii?
 - Are the orbits circular or eccentric?
 - Are multiple-planet systems common?
- For multiple planet systems
 - What is the typical mass distribution of planets in a system?
 - What is the typical radius distribution?
 - Are the orbits co-planar?
 - Must have astrometry to answer this
 - Are the planets stable?

- Stellar type F8V, 1.3 solar mass
- Distance = 15 pc
- Planetary companions:

– b: mass $0.72~M_{jup}$ orbit radius 0.06~AU period 4.6~days – c: mass $1.98~M_{jup}$ orbit radius 0.83~AU period 242~days – d: mass $4.11~M_{iup}$ orbit radius 2.50~AU period 1269~days

Ref: Butler, et al. 1999, ApJ (submitted)

Title: /home/unwin/mac/fig4c.eps

Creator: XV Version 3.10a Rev: 12/29/94 - by John Bradley

Preview: This EPS picture was not saved with a preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of

printers

JPL Aþril 21, 2000

S. Unwin - 19

Astrometric Detection of Upsilon Andromedae

Astrometric signature:

b: amplitude = 2.3 μas radial velocity 70 m/s
 c: amplitude = 89.3 μas radial velocity 58 m/s

d: amplitude = 557.5 μas radial velocity 70 m/s

• Distance: 15 pc

Title: (upsAnd_purp.eps) Andromedae

Creator: Adobe Illustrator Viewed face on

Preview: This EPS picture was not saved with a

preview (TIFF or PICT) included in it Comment: This EPS picture will print to a postscript printer but not to other types of

printers

Our Solar system

litle: (sun purp.eps) representation 15 pc, face-on

Creator: Adobe Illustrator(r) 6.0.2

Preview: This EPS picture was not saved with a

preview (TIFF or PICT) included in it

Comment: This EPS picture will print to a postscript

printer but not to other types of printers

JPL April 21, 2000

S. Unwin - 20

Toward Future Missions

- SIM will serve as a technology precursor for future interferometers in space
- A direct precursor to the Terrestrial Planet Finder
- Demonstrate:
 - Operation of a Michelson interferometer in space
 - Fringe nulling
 - Control of thermal and vibration environment
 - Synthesis imaging in space
 - Precision deployments
 - Angle and pathlength control

Conclusions

- SIM is a space-based optical interferometer for precision astrometry
 - 10-m baseline, Michelson beam combiner
- Launch mid-2006, with a 5-year mission lifetime
- SIM has a broad science program
 - Astrometric detection of extrasolar planets
 - Detect planets with a range of masses down to a few Earth masses

S. Unwin - 22

- Galactic dynamics
- Rotational parallaxes of galaxies
- Using gravitational lenses to probe dark matter
- Stellar astrophysics
- etc......
- SIM will serve as a technology precursor for future interferometers in space

JPL April 21, 2000